// Copyright 2018 Google Inc. precision mediump float; uniform vec4 u_ambient_light_color; uniform vec4 u_SceneLight_0_color; uniform vec4 u_SceneLight_1_color; uniform vec3 u_SpecColor; uniform float u_Shininess; uniform sampler2D u_MainTex; uniform vec4 u_time; uniform float _EmissionGain; varying vec4 v_color; varying vec3 v_normal; varying vec3 v_position; varying vec3 v_light_dir_0; varying vec3 v_light_dir_1; varying vec2 v_texcoord0; const float PI = 3.141592654; const float INV_PI = 0.318309886; const vec3 GAMMA_DIELECTRIC_SPEC = vec3(0.220916301, 0.220916301, 0.220916301); const float GAMMA_ONE_MINUS_DIELECTRIC = (1.0 - 0.220916301); float Pow5(float x) { return x * x * x * x * x; } float DisneyDiffuseTerm(float NdotV, float NdotL, float LdotH, float perceptualRoughness) { float fd90 = 0.5 + 2.0 * LdotH * LdotH * perceptualRoughness; float lightScatter = 1.0 + (fd90 - 1.0) * Pow5(1.0 - NdotL); float viewScatter = 1.0 + (fd90 - 1.0) * Pow5(1.0 - NdotV); return lightScatter * viewScatter; } float SmithJointVisibilityTerm(float NdotL, float NdotV, float roughness) { float lambdaV = NdotL * mix(NdotV, 1.0, roughness); float lambdaL = NdotV * mix(NdotL, 1.0, roughness); return 0.5 / (lambdaV + lambdaL + 1e-5); } float GgxDistributionTerm(float NdotH, float roughness) { float a2 = roughness * roughness; float d = (NdotH * a2 - NdotH) * NdotH + 1.0; return INV_PI * a2 / (d * d + 1e-7); } vec3 FresnelTerm (vec3 F0, float cosA) { float t = Pow5(1.0 - cosA); return F0 + (vec3(1.0) - F0) * t; } vec3 SurfaceShaderInternal( vec3 normal, vec3 lightDir, vec3 eyeDir, vec3 lightColor, vec3 diffuseColor, vec3 specularColor, float perceptualRoughness) { float NdotL = clamp(dot(normal, lightDir), 0.0, 1.0); float NdotV = abs(dot(normal, eyeDir)); vec3 halfVector = normalize(lightDir + eyeDir); float NdotH = clamp(dot(normal, halfVector), 0.0, 1.0); float LdotH = clamp(dot(lightDir, halfVector), 0.0, 1.0); float diffuseTerm = NdotL * DisneyDiffuseTerm(NdotV, NdotL, LdotH, perceptualRoughness); if (length(specularColor) < 1e-5) { return diffuseColor * (lightColor * diffuseTerm); } float roughness = perceptualRoughness * perceptualRoughness; float V = GgxDistributionTerm(NdotH, roughness); float D = SmithJointVisibilityTerm(NdotL, NdotV, roughness); float specularTerm = V * D * PI; specularTerm = sqrt(max(1e-4, specularTerm)); specularTerm *= NdotL; vec3 fresnelColor = FresnelTerm(specularColor, LdotH); return lightColor * (diffuseTerm * diffuseColor + specularTerm * fresnelColor); } vec3 SurfaceShaderSpecularGloss( vec3 normal, vec3 lightDir, vec3 eyeDir, vec3 lightColor, vec3 albedoColor, vec3 specularColor, float gloss) { float oneMinusSpecularIntensity = 1.0 - clamp(max(max(specularColor.r, specularColor.g), specularColor.b), 0., 1.); vec3 diffuseColor = albedoColor * oneMinusSpecularIntensity; float perceptualRoughness = 1.0 - gloss; return SurfaceShaderInternal( normal, lightDir, eyeDir, lightColor, diffuseColor, specularColor, perceptualRoughness); } vec3 SurfaceShaderMetallicRoughness( vec3 normal, vec3 lightDir, vec3 eyeDir, vec3 lightColor, vec3 albedoColor, float metallic, float perceptualRoughness) { vec3 specularColor = mix(GAMMA_DIELECTRIC_SPEC, albedoColor, metallic); float oneMinusReflectivity = GAMMA_ONE_MINUS_DIELECTRIC - metallic * GAMMA_ONE_MINUS_DIELECTRIC; vec3 diffuseColor = albedoColor * oneMinusReflectivity; return SurfaceShaderInternal( normal, lightDir, eyeDir, lightColor, diffuseColor, specularColor, perceptualRoughness); } vec3 ShShaderWithSpec( vec3 normal, vec3 lightDir, vec3 lightColor, vec3 diffuseColor, vec3 specularColor) { float specularGrayscale = dot(specularColor, vec3(0.3, 0.59, 0.11)); float NdotL = clamp(dot(normal, lightDir), 0.0, 1.0); float shIntensityMultiplier = 1. - specularGrayscale; shIntensityMultiplier *= shIntensityMultiplier; return diffuseColor * lightColor * NdotL * shIntensityMultiplier; } vec3 ShShader( vec3 normal, vec3 lightDir, vec3 lightColor, vec3 diffuseColor) { return ShShaderWithSpec(normal, lightDir, lightColor, diffuseColor, vec3(0.,0.,0.)); } vec3 LambertShader( vec3 normal, vec3 lightDir, vec3 lightColor, vec3 diffuseColor) { float NdotL = clamp(dot(normal, lightDir), 0.0, 1.0); return diffuseColor * lightColor * NdotL; } vec3 computeLighting() { vec3 normal = normalize(v_normal); if (!gl_FrontFacing) { normal *= -1.0; } vec3 lightDir0 = normalize(v_light_dir_0); vec3 lightDir1 = normalize(v_light_dir_1); vec3 eyeDir = -normalize(v_position); float smoothness = .8; vec3 spec = vec3(.05,.05,.05); vec3 diffuse = vec3(0.0,0.0,0.0); vec3 lightOut0 = SurfaceShaderSpecularGloss(normal, lightDir0, eyeDir, u_SceneLight_0_color.rgb, diffuse, spec, smoothness); vec3 lightOut1 = ShShaderWithSpec(normal, lightDir1, u_SceneLight_1_color.rgb, diffuse, spec); vec3 ambientOut = vec3(0.0,0.0,0.0); return (lightOut0 + lightOut1 + ambientOut); } vec4 bloomColor(vec4 color, float gain) { color = pow(color, vec4(2.2,2.2,2.2,2.2)); color.rgb *= 80.0 * exp(gain * 10.0); return color; } void main() { gl_FragColor.rgb = computeLighting(); vec2 uv = v_texcoord0; uv.x -= u_time.x * 15.0; uv.x = mod( abs(uv.x), 1.0); float neon = pow(10.0 * clamp(.2 - uv.x,0.0,1.0), 5.0); neon = clamp(neon,0.0,1.0); vec4 bloom = bloomColor(v_color, _EmissionGain); vec3 eyeDir = -normalize(v_position); vec3 normal = normalize(v_normal); float NdotV = abs(dot(normal, eyeDir)); bloom *= pow(NdotV,2.0); bloom *= NdotV; gl_FragColor.rgb += neon * bloom.rgb; gl_FragColor.a = 1.0; }